

Readings

- Read sections 1.1-1.3 (pages) 6-16)
- Understand examples 1.1 on page 7
- Do exercises 1.1, 1.5, 1.6, 1.14 on page 46

Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition.

Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph D

Title

Kizito NKURIKIYEYEZU. Ph.D.

Learning outcomes

- That electronic circuits alertprocess signals, and thus understanding electrical signals is essential to appreciating the material in this book.
- Review the Thevenin and Norton representations of signal sources.
- The representation of a signal as sum of sine waves.
- The analog and digital representations of a signal.

Signals and amplifiers

- Real-world signals are not electrical
- To extract required information from a set of signals, a signal must first be converted into an electrical signal by transducers
- The signals are also very weak and need to be amplified
- Example: A radio receiver (Fig. 1)'s antenna get very low power level, on the

FIG 1. Diagram of a typical radio receiver¹

Red parts are those that handle the incoming radio frequency (RF) signal; green are parts that operate at the intermediate frequency (IF), while blue parts operate at the modulation (audio) frequency. The dotted line indicates that the local oscillator and RF filter must be tuned in tandem.

Electrical signals

- A signal contains information e.g. voice of a person (Fig. 2)
- Process —an operation which allows an observer to understand this information from a signal generally done electrically
- Transducer device which converts signal from non-electrical to electrical form e.g. microphone (sound to electrical)

Kizito NKURIKIYEYEZU, PI

FIG 2. Signal representation of sound wave

Signal representation

- A an electrical signal can be represented by a voltage source or a current source.
- Thevenin form —voltage source $v_s(t)$ with series resistance R_S , preferable when R_S is low
- Norton form —current source *i*_s(*t*) with parallel resistance *R*_S, preferable when *R*_S, is high
- In depth explanation in Example 1.1 on page 7 in the textbook

 Kiele NKIEKKEZU B D
 Title

(a) Thevenin form

(b) Norton form

FIG 3. Two representations of a signal source

May 18, 2022	5/9

FIG 5. A square-wave signal of amplitude V

Frequency spectrum of signals

- A sine-wave signal is completely characterized by its peak value V_a, its frequency ω, and its phase.
- Frequency spectrum —defines the a time-domain signal in terms of the strength of harmonic components
- Harmonics components undesirable distortion of a sinusoidal waveform by waveforms of different frequencies which deviate it from sinusoidal waveforms

FIG 4. Sine-wave voltage signal of amplitude V_a and frequency f = 1/T Hz. Angular frequency $\omega = 2\pi f$ rad/s

Fourier series

- Fourier series allow to express any signal as the sum of an infinite number of sinusoids whose frequencies are harmonically related
- For instance, the symmetrical square-wave signal in Fig. 5 can be expressed by Equation (1)

pressed by Equation (1)

$$v(t) = \frac{4V}{\pi} \left(\sin(\omega_0 t) + \frac{1}{3}\sin(3\omega_0 t) + \frac{1}{5}\sin(5\omega_0 t) \right) \quad (1)$$

Title

Analog and digital signals

- analog signal —is continuous with respect to both value and time
- discrete-time signal —is continuous with respect to value but sampled at discrete points in time
- digital signal —is quantized as well as sampled at discrete points in time

FIG 6. Sampling an analog signal

FIG 7. Resulting discrete-time signal

Digital data acquisition process

FIG 8. Digital data acquisition system¹

FIG 9. Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC)²

¹https://en.wikipedia.org/wiki/Data_acquisition ²https://www.allaboutcircuits.com/technical-articles/ an-introduction-to-digital-signal-processing/

		an-introduction-to-digital-signal-processing/					
Kizito NKURIKIYEYEZU, Ph.D.	Title	May 18, 2022 8 / 9	Kizito NKURIKIYEYEZU, Ph.D.	Title	May 18, 2022		